
Contention Bounds for Combinations of Computation
Graphs and Network Topologies

Grey Ballard
James Demmel
Andrew Gearhart
Benjamin Lipshitz
Oded Schwartz
Sivan Toledo

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-147
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-147.html

August 8, 2014

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 AUG 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Contention Bounds for Combinations of Computation Graphs and
Network Topologies

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Network topologies can have signi cant e ect on the costs of algorithms due to inter-processor
communication. Parallel algorithms that ignore network topology can su er from contention along network
links. However, for particular combinations of computations and network topologies, costly network
contention may inevitably become a bottleneck, even for optimally designed algorithms. We obtain a novel
contention lower bound that is a function of the network and the computation graph parameters. To this
end, we compare the communication bandwidth needs of subsets of processors and the available network
capacity (as opposed to per-processor analysis in most previous studies). Applying this analysis we improve
communication cost lower bounds for several combinations of fundamental computations on common
network topologies.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

Research funded by DARPA Award HR0011-12-2-0016, the Center for
Future Architecture Research, a member of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA, and
ASPIRE Lab industrial sponsors and affiliates Intel, Google, Nokia, NVIDIA,
Oracle, MathWorks and Samsung. Also funded by U.S. DOE Office of
Science, Office of Advanced Scientific Computing Research, Applied
Mathematics program DE-SC0004938, DE-SC0005136, DE-
SC0003959,DE-SC0008700, DE-SC0008699, DE-SC0010200 and DOE
AC02-05CH11231. Also supported by grants 1878/14 and 1045/09 from
the Israel Science Foundation, 2010231 from the US-Israel Bi-National
Science Foundation, grant 3-10891 from the Ministry of Science and

Technology, Israel and in part by the Sandia National Laboratories
Truman Fellowship.

Contention Bounds for Combinations of Computation
Graphs and Network Topologies

Grey Ballard
Sandia National Laboratories

gmballa@sandia.gov

James Demmel
UC Berkeley

demmel@cs.berkeley.edu

Andrew Gearhart
UC Berkeley

agearh@cs.berkeley.edu
Benjamin Lipshitz∗

UC Berkeley
lipshitz@cs.berkeley.edu

Oded Schwartz
UC Berkeley

odedsc@cs.berkeley.edu

Sivan Toledo
Tel-Aviv University

stoledo@tau.ac.il

ABSTRACT
Network topologies can have significant effect on the costs of
algorithms due to inter-processor communication. Parallel
algorithms that ignore network topology can suffer from con-
tention along network links. However, for particular combi-
nations of computations and network topologies, costly net-
work contention may inevitably become a bottleneck, even
for optimally designed algorithms. We obtain a novel con-
tention lower bound that is a function of the network and
the computation graph parameters. To this end, we com-
pare the communication bandwidth needs of subsets of pro-
cessors and the available network capacity (as opposed to
per-processor analysis in most previous studies). Applying
this analysis we improve communication cost lower bounds
for several combinations of fundamental computations on
common network topologies.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
on matrices

General Terms
Algorithms, Design, Performance.

Keywords
Network topology, Communication-avoiding algorithms, Strong
scaling, Communication costs.

∗Current affiliation: Google Inc.

.

1. INTRODUCTION
Good connectivity of the inter processor network is nec-

essary for fast execution of parallel algorithms. Insufficient
graph-expansion of the network provably slows down specific
parallel algorithms that are communication intensive. While
parallel algorithms that ignore network topology can suf-
fer from contention along network links, for particular com-
binations of computations and network topologies, costly
network contention may be inevitable, even for optimally
designed algorithms. In this paper we obtain novel lower
bounds on such contention cost, and point to cases where
this cost is a performance bottleneck.

We use a variant of the distributed-memory communica-
tion model (cf, [16, 19, 11]), where the bandwidth-cost of an
algorithm is proportional to the number of words communi-
cated by one processor (we omit the latency cost / message
count discussion from this work). As in the distributed-
memory communication model we have P processors and a
local memory of size M for each processor. However, here,
we do not assume all-to-all connectivity, but rather some
network graph GNet with P vertices. In this work we assume
all edges (network links) have the same bandwidth, and the
nodes of the network are both processors and routers (i.e. a
direct network, where no node is solely a router). We ignore
processor injection rates in this model.

Most previous communication cost lower bounds for par-
allel algorithms utilize per-processor analysis. That is, the
lower bounds establish that some processor must communi-
cate a given amount of data. These include classical ma-
trix multiply, direct and iterative linear algebra algorithms,
FFT, Strassen and Strassen-like fast algorithms, graph re-
lated algorithms, N -body, sorting, and others (cf. [3, 25, 23,
32, 26, 11, 9, 15, 22, 8, 28, 35, 21, 34]).

By considering the network graphs, we introduce com-
munication lower bounds for certain computations and net-
works that are tighter than what was previously known. We
bound from below the number of words communicated be-
tween a subset of processors and the rest of the processors for
a given parallel algorithm (defined by a computation graph
and work assignment to the processors), and divide it by the
number of words that the network is capable of communi-
cating simultaneously between that subset of processors and
the rest of the graph. This relates to the contention cost of
the algorithm, which we specify in Definition 2.2. Applying
the main theorem we improve (i.e., increase) communication
cost lower bounds for several combinations of fundamental

computations on common network topologies. Note that we
inherit any assumptions made in the original per-processor
lower bounds, e.g. no recomputation. These contention
bounds may suggest directions for hardware/network design
tailored for heavily used computation kernels and may as-
sist when scheduling users’ applications on (a subset of) a
supercomputer.

2. CONTENTION LOWER BOUND
In this section we state our main result, which translates

per-processor bandwidth cost lower bounds to contention
cost lower bounds. The following definitions differentiate
these costs.

Definition 2.1. Let a parallel algorithm be run on a par-
allel distributed-memory machine with P processors. The
per-processor bandwidth cost Wproc is the maximum over
processors 1 ≤ p ≤ P of the number of words sent or re-
ceived by processor p.

Observe that for Wproc we can plug in two types of per-
processor lower bounds: memory-independent Wproc(P,N)
(cf. [9]) and memory-dependent Wproc(P,M,N) (cf. [26,
11, 12, 10, 21]) where N is the input and output data size.

Definition 2.2. Let a parallel algorithm be run on a par-
allel distributed-memory machine with network graph GNet =
(V, Ê) where V and Ê are the set of nodes and network links
in GNet, respectively. The contention cost Wlink is the maxi-
mum over edges e ∈ Ê of the number of words communicated
along e during the execution of the algorithm.

In order to prove our result, we will use graph expan-
sion analysis. Recall that the small set expansion hs(G) of

a d-regular graph G = (V, Ê) is the minimum normalized
number of edges leaving a set of vertices of size at most s.
Formally, for s ≤ |V |/2, we have

hs(G) = min
S⊆V,|S|≤s

|E(S, V \ S)|
|E(S)|

where E(S) is the set of edges that have at least one endpoint
in vertex subset S and E(S, S̄) is the set of edges with only
one endpoint in S. The cardinality of a set S is represented
by |S|. In the case of d-regular graphs, |E(S)| ≤ d|S|.

Theorem 2.3. Consider a distributed-memory machine
with P processors, each with local memory of size M , and an
inter-processor network graph GNet. Given a computation
with input and output data size N , and lower bound on the
memory-dependent per-processor bandwidth cost Wproc(P,M,N),
for all algorithms that distribute the workload so that ev-
ery processor performs Ω(1/P) of the computation, and dis-
tributing the input and output data such that every processor
stores O(1/P) of the data, the memory-dependent contention
cost Wlink(P,M,N) is bounded below by

Wlink(P,M,N) ≥ max
t∈T

Wproc(P/t,M · t,N)

d · t · ht(GNet)
where

T = {t : 1 ≤ t ≤ P/2,∃S ⊆ V s.t.
|S| = t and

ht(G) = |E(S, V \ S)|/|E(S)|}.

Proof. Consider a partitioning of the P processors into
P/t subsets of size t ∈ T (w.l.o.g., P is divisible by t), where
at least one of the subsets st is connected to the rest of the
network graph with at most d · t · ht(GNet) edges.1 The
existence of such a set st is guaranteed by the definition of
hs(GNet) and T . Then st has a total of M · t local mem-
ory. By the workload distribution assumption, the proces-
sors in st perform a fraction Ω(t/P) of the flops, and by the
data distribution assumption, st has local access to frac-
tion O(t/P) of the input/output. Hence we can emulate
this computation by a parallel machine with P/t processors,
each with M · t local memory (see Figure 1), and apply the
corresponding per-processor lower bound deducing that the
processors in st require at least Wproc(P/t,M · t,N) words
to be sent/received to the processors outside st throughout
the running of the algorithm. At most d · t · ht(GNet) edges
connect st to the rest of the graph. Hence at least one edge

communicates at least
Wproc(P/t,M·t,N)

d·t·ht(GNet)
words. Since t is a

free parameter, we can pick it to maximize Wlink(P,M,N),
and the theorem follows.

Note that the memory-independent contention lower bound,
Wlink = Wlink(P,N), follows.

Figure 1: Computation of t = 4 processors on a
16-processor machine can be emulated as the com-
putation of one processor on a 4-processor machine.

3. PRELIMINARIES

3.1 Per-Processor Lower Bounds
Before deriving bounds on link contention, we review the

per-processor communication bounds for several classes of
algorithms.

Classical Linear Algebra.
Most classical direct linear algebra computations can be

specified by three nested loops, and for dense n×n matrices,
the number of flops performed is Θ(n3).2 Informally, such
computations, which include matrix multiplication, Cholesky
and LU decompositions, and many others, can be defined by

Cij = fij({gijk(Aik, Bkj)}1≤k≤n) for 1 ≤ i, j ≤ n (1)

where f and g are sets of functions particular to the compu-
tation. For example, in the case of classical matrix multipli-
cation, fij is a summation and gijk is a scalar multiplication
for all i, j, k. For a more formal definition, see [7, Definition

1Note that st is connected to the rest of the network graph
with exactly d · t · ht(GNet) edges only when |E(S)| = d|S|.
2For matrix computations, we denote the size of the in-
put/output to be N = Θ(n2).

4.1]. For such computations, we have the following lower
bound:

Theorem 3.1 ([11],[26]). Consider an algorithm per-
forming a computation of the form given by equation (1)
on P processors, each with local memory of size M , and as-
sume one copy of the input data is initially distributed across
processors and the computation is load balanced. Then the
number of words some processor must communicate is at
least

Wproc(P,M,N) = Ω

(
n3

PM1/2

)
.

Note that the local memory size M appears in the denom-
inator of the expression above, which is why we refer to it
as the memory-dependent bound. Additionally, such com-
putations also inherit a memory-independent lower bound:

Theorem 3.2 ([9]). Consider an algorithm performing
a computation of the form given by equation (1) on P pro-
cessors, and assume just one copy of the input data is ini-
tially distributed across processors and the computation is
load balanced. Then the number of words some processor
must communicate is at least

Wproc(P,N) = Ω

(
n2

P 2/3

)
.

Strassen-like Matrix Multiplication.
Similar lower bounds exist for Strassen’s matrix multipli-

cation and similar algorithms, though the proof techniques
differ substantially. Informally, we use the term “Strassen-
like” to refer to algorithms that recursively multiply matri-
ces according to a base-case computation. For square al-
gorithms, this corresponds to multiplying n0 × n0 matrices
with m0 scalar multiplications, where n0 and m0 are con-
stants. Using recursion, this results in a square matrix mul-
tiplication flop count of Θ(nω0) where ω0 = logn0

m0. Note
that additional technical assumptions are required for the
communication lower bounds to apply and that Strassen-
like algorithms may have a rectangular base case; see [12,
Section 5.1] for more details. The memory-dependent com-
munication lower bound for Strassen-like algorithms is:

Theorem 3.3 ([12, Corollary 1.5]). Consider a
Strassen-like matrix multiplication algorithm that requires
Θ(nω0) total flops. Suppose a parallel algorithm performs
the computation using P processors (each with local mem-
ory of size M), load balances the flops, and performs no
redundant computation. Then the number of words some
processor must communicate is at least

Wproc(P,M,N) = Ω

(
nω0

PMω0/2−1

)
.

Additionally, such computations also inherit a memory-
independent lower bound:

Theorem 3.4. Suppose a parallel algorithm performs a
Strassen-like matrix multiplication algorithm requiring Θ(nω0)
flops, load balances the computation across P processors,
and performs no redundant computation. Then under some
technical assumptions (see [12]) the number of words some
processor must communicate is at least

Wproc(P,N) = Ω

(
n2

P 2/ω0

)
.

Proof. Identical to Theorem 2.1 in [9], with ω0 replacing
log27.

Programs Referencing Arrays.
The model defined in Equation (1) encompasses most di-

rect linear algebra computations, but lower bounds can be
obtained for a more general set of computations. In par-
ticular, Christ et al. [21] consider programs of the following
form:

for all I ∈ Z ⊆ Zd, in some order,

inner loop(I, (A1, . . . , Am), (φ1, . . . , φm))
(2)

where Zd is the d-dimensional space of integers and inner loop()
represents a computation involving arrays A1, ..., Am of di-
mensions d1, ..., dm that are referenced by the correspond-
ing subscripts φ1(I), ..., φm(I) where φi are affine maps φj :
Zd → Zdj for iteration I = (i1, ..., id). For example, matrix-
matrix multiplication has (A1, A2, A3) = (A,B,C), φ1(I) =
φ1(i1, i2, i3) = (i1, i3), φ2(I) = φ2(i1, i2, i3) = (i3, i2), φ3(I) =
φ3(i1, i2, i3) = (i1, i2) and the function inner loop() is de-
fined as A3(φ3(I)) = A3(φ3(I)) +A1(φ1(I)) ∗A2(φ2(I)).

Because the work inside the loop is currently defined as
a general function, the space of potential executions of in-
ner loop() must be restricted in a manageable manner, or
to “legal parallel executions” as defined in [21]. To express
the lower bounds, we define a set of linear constraints on a
vector of unknown scalars (s1, ..., sm)

rank(H) ≤
m∑
j=1

sjrank(φj(H)), (3)

for all subgroups H of Zd, where rank(H) is the cardinality
of any maximal subset of Abelian group H that is linearly
independent.3 For such computations we have the following
lower bound:

Theorem 3.5 ([21]). Consider an algorithm perform-
ing a computation of the form given by equation (2) on P
processors, each with local memory of size M , and assume
the input data is initially evenly distributed across proces-
sors. Then for any legal parallel execution and sufficiently
large |Z|/P , the number of words some processor must com-
municate is at least

Wproc(P,M,N) = Ω

(
|Z|

PMsHBL−1

)
,

where sHBL is the minimum value of
∑m
i=1 si subject to (3),

assuming that this linear program is feasible (see [21]).

We restate the memory-independent bound from [21] for
such computations (note that the formal proof has not yet
appeared). For legal parallel executions of computations of
the form (2) on P processors, some processor must move

Wproc(P,N) = Ω

((
|Z|
P

)1/sHBL

− N

P

)
(4)

words where N is the sum of the sizes of arrays {Ai} (as-
sumed to be evenly distributed across processors) and sHBL

is defined as in Theorem 3.5. In most cases, the negative

3The rank of an Abelian group is analogous to the concept
of the dimension of a vector space.

term in the expression is asymptotically dominated and can
be ignored.

Note that Theorem 3.5 generalizes Theorem 3.1. For ex-
ample, matrix multiplication satisfies both forms (1) and
(2), where in the latter case |Z| = n3 and sHBL = 3/2.

Theorem 3.5 also applies to, for example, N -body compu-
tations where all pairs of interactions are computed. In the
this case, |Z| = Θ(N2) and sHBL = 2, yielding lower bounds
of Wproc(P,M,N) = Ω(N2/(PM)) and Wproc(P,N) =

Ω(N/P 1/2). We also note that Theorem 3.5 applies to N -
body computations that use a distance cutoff to reduce the
number of neighbor interations, i.e. |Z| � N2.

FFT/Sorting.
We are unaware of any memory-dependent lower bound

per-processor bound for the FFT, although a sequential lower
bound was proven by Hong and Kung [25]. A parallel memory-
independent per-processor bound has been proven in the
LPRAM [4] and the BSP models of computation [15]. The
LPRAM model lower bound implies asymptotically the same
lower bound for our distributed parallel model:

Theorem 3.6 ([4]). Given an algorithm that computes
an n-input FFT digraph a LPRAM model of computation
with P processors, and no recomputation is allowed, then
the I/O complexity of the algorithm is

Wproc(P,N) = Ω

(
nlog(n)

Plog(n/P)

)
.

3.2 Small Set Expansion of Various Networks
We next demonstrate our bounds on several classes of al-

gorithms on a particular pair of networks: D-dimensional
tori and meshes.

Toroidal networks are common topologies amongst super-
computers, with IBM’s Blue Gene/L [2] and Blue Gene/P
[1] machines possessing 3D tori. In Blue Gene/Q, IBM used
a 5-dimensional torus [20] and the K computer in Japan uti-
lizes a 6-dimensional network topology [6]. Intel Xeon Phi
coprocessors rely on a ring-based (a 1-dimensional torus)
on-chip communication network between cores [27]. In this
paragraph, we derive a tight bound on the network small set
expansion for this class of networks.

The D-dimensional torus or mesh graph GNet has degree
at most d = O(D) and the small set expansion shown below.
We treat D here as a constant. For a fixed dimension D the
bounds are tight, up to a constant factor. For a tighter
analysis of these graphs, see [17].

Lemma 3.7. Let G be a D-dimensional torus or mesh,
with kD vertices. Then asymptotically in s,

hs(G) = Θ
(
s−1/D

)
.

Proof. For an upper bound on hs(G) consider a subset

S ∈ V (G) which is a D-dimensional submesh of length s1/D

in each dimension. The number of neighbors of this sub-

mesh on each of its 2D faces is O(s
D−1
D). Thus |E(S, V \

S)| = 2D · O(s
D−1
D). The number of vertices of S is s.

The degree of each vertex is O(D). Hence hs(G) ≤ 2D ·
O(s(D−1)/D)/(O(D)s) = O(s−1/D).

For a lower bound on hs(G) we use the Loomis-Whitney
inequality [30]. Consider a set S ⊆ V (G) of size s ≤ V (G)/2.

Let A1, A2, ..., AD be the projections of S onto the (D− 1)-
dimensional coordinate hyperplanes; let a1, ..., aD be their
corresponding sizes. Then by the Loomis-Whitney inequal-
ity we have sD−1 ≤

∏
1≤i≤D ai. Letting m = argmaxi{ai},

we have s1−1/D ≤ am. Consider the “pencil” of vertices that
corresponds to a point in Am: if there exists a vertex in
the pencil that is not in S, then the pencil contributes at
least one edge to the cut E(S, V \S). We say such a pen-
cil is partially full. We later show that there are at least
(1− 1/21/D)am partially-full pencils. Thus they contribute

a total of at least (1 − 1/21/D)am ≥ (1 − 1/21/D)s1−1/D

edges to the cut. Hence hs(G) ≥ (1−1/21/D)/(2D ·s1/D) =

Ω(s−1/D). To see that the number of partially-full pencils is

indeed at least (1− 1/21/D)am, assume for the sake of con-

tradiction that more than am/2
1/D pencils are full (i.e. have

all their vertices in S). This implies that s > kam/2
1/D ≥

ks1−1/D/21/D, thus s > kD/2 = |V |/2, which is a contra-
diction since s ≤ |V |/2.

4. APPLICATIONS

4.1 Deriving the Contention Lower Bounds
In this section, we derive contention lower bounds by plug-

ging the memory-dependent and memory-independent per-
processor lower bounds [26, 12, 9, 21] into Theorem 2.3 and
using the properties of D-dimensional tori. Table 1 summa-
rizes these results. In the algebra that follows, we assume
the network topology to be a D-dimensional torus or mesh.

Direct Linear Algebra, Strassen, Strassen-like, O(n2)
n-body algorithms.

We apply Theorem 2.3 to the relevant per-processor bounds
given in Section 3.1. Let F denote the number of work op-
erations (e.g. flops or loop iterations) of the different com-
putations. The per-processor memory-dependent bound is
thus:

Wproc(P,M,N) = Ω

(
F

PMα−1

)
(5)

where α = 3/2 for direct dense linear algebra, α = ω0/2
for Strassen-like matrix multiplication, α = 2 for the O(n2)
n-body problem. We next apply Theorem 2.3 to (5). By
Lemma 3.7, for a D-dimensional torus, the denominators
of the contention bounds in Theorem 2.3 and Expression
(??) are 2D · t · Θ(t−1/D). Thus, the memory-dependent
contention bound is:

Wlink(P,M,N) = max
t∈T

Ω

(
F

PMα−1
· t1−α+1/D

)
(6)

Note that t1−α+1/D is monotonic (in the given range), but
that the exponent can be positive, negative or zero. If the
exponent of t is negative or zero, then the expression is max-
imized at t = 1, reproducing the per-processor bound (up
to a constant factor). If the exponent is positive, namely
D ≤ D1 = 1/(α − 1), then the expression is maximized at

t = P/2, and we obtain a new and tighter bound 4:

Wlink(P,M,N) = Ω

(
F

Pα−1/DMα−1

)
. (7)

The per-processor memory-independent bound is

Wproc(P,N) = Ω

(
N

P 1/α

)
(8)

We next apply Theorem 2.3 to (8) and obtain:

Wlink(P,N) = max
t∈T

Ω

(
N

P 1/α
· t1/α−1+1/D

)
(9)

Again, t1/α−1+1/D is monotonic and may be positive, neg-
ative or zero. If the exponent of t is negative or zero, then
the expression is maximized at t = 1, reproducing the per-
processor bound (up to a constant factor). If the exponent
is positive, namely D ≤ D2 = α/(α−1), then the expression
is maximized at t = P/2, and we obtain a new and tighter
bound:

Wlink(P,N) = Ω

(
N

P 1−1/D

)
. (10)

Table 1 presents the communication lower bounds for each
of the computations described in Sections 3.1 onD-dimensional
tori with the respective values of F and α.

Programs that Reference Arrays.
Note that if we assume that F = O(Nα) in the memory-

independent lower bound for programs that reference ar-
rays with α = sHBL, we arrive at the form of this bound
used for the derivation of the direct linear algebra, Strassen,
Strassen-like and O(n2) n-body contention bounds. In gen-
eral, this does not have to be the case for the set of programs
defined by Expression 2 above.

According to Theorem 3.5, the memory-dependent per-
processor bandwidth lower bound for programs defined by
Expression 2 is

Wproc(P,M,N) = Ω

(
|Z|

PMsHBL−1

)
.

Similar to the derivation for the previous problems (albeit
with α = sHBL), the bound becomes

Wlink(P,M,N) = max
1≤t≤P/2

Ω

(
|Z|

PMsHBL−1
· t1−sHBL+1/D

)
which is maximized at either t = 1 (the per-processor bound),
or t = P/2 (see Footnote 4). So, we obtain

Wlink(P,M,N) = Ω

(
|Z|

P sHBL−1/DMsHBL−1

)
as a memory-dependent lower bound on contention. In a
similar manner, we can derive a memory-independent con-
tention lower bound. From Equation (4), the memory-independent
per-processor bound is

4 Note that there may not be a subset of the vertices of GNet
that attains the small set expansion ht(GNet) of size exactly
P/2. However, the small set expansion of tori and meshes is
attained for small sets of size P/c for some constant c ≥ 2
(e.g. consider a sub-tori), hence the following contention
analysis holds up to a constant factor.

Wproc(P,N) = Ω

((
|Z|
P

)1/sHBL
)

assuming we drop the N/P term from the bound. At t =
P/2 (as again we observe that the contention bound is max-
imized at either t = 1 or t = P/2), we derive the memory-
independent lower bound on contention

Wlink(P,N) = Ω

(
|Z|1/sHBL

P 1−1/D

)
.

FFT/Sorting.
As with the previous algorithms, we apply Theorem 2.3

to the relevant per-processor bound given in Section 3.1.
The per-processor memory-independent bound is thus

Wproc(P,N) = Ω

(
nlog(n)

Plog(n/P)

)
. (11)

We next apply this bound to Theorem 2.3 and obtain:

Wlink(P,N) = max
1≤t≤P/2

Ω

(
nlog(n)

Plog(nt/P)t−1/D

)
(12)

=
nlog(n)

P
max

1≤t≤P/2
Ω

(
t1/D

log(nt/P)

)
.

Again, when t = 1 we obtain the original per-processor
bound. Equation 12 has a stationary point at t = PCD/n
(where C is the base of the logarithm), but via consideration
of the second derivative wrt to t, it can be shown that this
point is a minima for all relevant values of n,P and D. Thus,
we can derive a memory-independent contention bound by
setting t = P/2 (see Footnote 4):

Wlink(P,N) = Ω

(
N

P 1−1/D

)
(13)

as N = O(n).

4.2 Analysis and Interpretation

Which bound dominates?.
Our first observation is that, for these computations, the

memory-independent contention bound dominates the memory-
dependent contention bound for many algorithms. In the
cases of direct linear algebra, Strassen and Strassen-like, and
the O(n2) n-body problem we prove this by contradiction:
if the memory-dependent contention bound dominates, then
the problem is too large to be distributed across all the pro-
cessors’ local memories. Thus, if

F

Pα−1/DMα−1
>

N

P 1−1/D

then, as F = θ(Nα), we have

Nα−1 > Pα−1Mα−1

which is a contradiction as we assumed that N ≤ PM . For
programs that reference arrays, the proof requires a bit more
of the theoretical apparatus from [21] and is proven in Ap-
pendix B. We note that in practice the value of constants

Memory Dependent Memory Indepedent

Direct Wproc Ω
(

n3

PM1/2

)
Ω
(

n2

P2/3

)
Linear

Algebra Wlink Ω
(

n3

P3/2−1/DM1/2

)
Ω
(

n2

P1−1/D

)
Strassen

Wproc Ω
(

nω0

PMω0/2−1

)
Ω
(

n2

P2/ω0

)
and

Strassen
Wlink Ω

(
nω0

Pω0/2−1/DMω0/2−1

)
Ω
(

n2

P1−1/D

)
-like

Wproc Ω
(
n2

PM

)
Ω
(

N

P1/2

)
O(n2) n-body

Wlink Ω
(

n2

P2−1/DM

)
Ω
(

N

P1−1/D

)
Wproc ? Ω

(
nlog(n)

Plog(n/P)

)
FFT/Sorting

Wlink ? Ω
(

N

P1−1/D

)
Programs Wproc Ω

(
|Z|

PMsHBL−1

)
Ω

((
|Z|
P

)1/sHBL
)

Referencing
Arrays Wlink Ω

(
|Z|

PsHBL−1/DMsHBL−1

)
Ω
(
|Z|1/sHBL

P1−1/D

)
Table 1: Per-processor bounds (Wproc) ([26, 11, 9, 12, 15]) vs. the new contention bounds (Wlink) on a D-
dimensional torus for classical linear algebra, fast matrix multiplication, O(n2) n-body, Fast Fourier Transform
(FFT) and a general set of programs that reference arrays.

may result in the memory-dependent contention bound be-
ing dominant, despite the asymptotic result.

For direct linear algebra, Strassen, Strassen-like andO(n2)
n-body algorithms, Figure 2 illustrates the relationships be-
tween the four types of bounds for a fixed computation, fixed
problem size N , and fixed local memory size M , varying the
number of processors P and the torus dimension D. See Ap-
pendix A for the derivation of the expressions used in Figure
2.

Depending on the dimension of the torus and number of
processors, the tightest bound may be one of the previously
known per-processor bounds or the memory-independent con-
tention bound. We first consider subdividing the vertical
axis of Figure 2, which corresponds to the torus dimension
D. Intuitively speaking, the smaller D is, the more likely
contention will dominate communication costs. For a given
algorithm, we let D = b1/(α − 1)c = bD1c is the maxi-
mum torus dimension such that the communication cost is
dominated by contention for all input and machine param-
eters. Similarly, we let D = dα/(α− 1)e= dD2e be the min-
imum torus dimension so that the communication cost is
not dominated by the contention (at least not by the bound
proved here). Note that for a combination of an algorithm
and a D-dimensional torus such that D1 < D < D2, either
the per-processor memory-dependent bound or the memory-
independent contention bound may dominate. See Table 2
for values of D1 and D2 for various matrix multiplication
algorithms. In particular, note that for the classical algo-
rithm, a 2D torus is not sufficient to avoid contention. While
Cannon’s algorithm [18] does not suffer from contention on
a 2D torus network, it is also not communication-optimal.
The more communication-efficient “3D” algorithms [14, 4,
31, 36], which utilize extra memory and have the ability
to strong scale perfectly, require a 3D torus to attain the
per-processor lower bounds. For matrix multiplication algo-

rithms with smaller exponents, the torus dimension require-
ments for remaining contention-free are even larger.

Range of perfect strong scaling.
We next consider subdividing the horizontal axis of Fig-

ure 2, which corresponds to the number of processors P .
Because Figure 2 shows a fixed problem size, increasing P
(moving to the right) corresponds to “strong scaling.” We
differentiate between whether or not the computation has
the possibility of strong scaling perfectly: that is, for a fixed
problem size, increasing the number of processors by a con-
stant factor reduces the communication costs (and running
time) by the same constant factor. Note that of the bounds,
the memory-dependent per-processor bound (Equation (5))
exhibits this possibility of perfect strong scaling, as P ap-
pears in the denominator with an exponent of 1. However, as
P increases, one of the memory-independent bounds even-
tually dominates and perfect strong scaling is no longer pos-
sible. See [9] for a discussion of this behavior given only
per-processor bounds.

For direct linear algebra, Strassen-like methods and the

O(n2) n-body problem, whenD ≥ D2 and P ≤ (F/NMα−1)
α
α−1 ,

then the memory-dependent per-processor bound dominates.
When this happens, we have a perfect strong scaling range.
For values of P beyond this range, the communication cost is
dominated by the memory-independent per-processor bound
(see [9] for further discussion). When D1 < D < D2, a
smaller strong-scaling ranges exists for P ≤ (F/NMα−1)D;
for values of P beyond this range, the communication cost
bound is dominated by contention. If D ≤ D1, then the
contention bounds always dominate and there is no strong-
scaling range. A similar analysis can demonstrate such a
region of perfect strong scaling in runtime for programs that
reference arrays.

Figure 3 shows this behavior for Strassen’s matrix multi-

P =
(

F
NMα−1

)α/(α−1)

P =
(

F
NMα−1

)D

P =
(

F
NMα−1

)1/(α−1)

1
α−1

D1 =

D2 = α
α−1

Figure 2: Relationship between the per-processor and contention communication lower bounds for direct
linear algebra, Strassen/Strassen-like and the O(n2) n-body problems.

Algorithm ω0 bD1c dD2e
Classical 3 2 3
Strassen [38] ≈ 2.81 2 4
Schönhage [33] ≈ 2.55 3 5
Strassen [39] ≈ 2.48 4 6
Vassilevska [40] ≈ 2.3727 5 7

Table 2: Torus dimensions so that communication
cost is either always contention bound (D ≤ bD1c) or
never contention bound (D ≥ dD2e) for a selection
of matrix multiplication algorithms. The assertions
regarding the last three algorithms are under some
technical assumptions / conjecture, see [12].

plication (where α = (log2 7)/2) given the relevant torus di-
mensions. For Strassen, F/NMα−1 = (N/M)α−1 = Pα−1

min ,
where Pmin is the minimum number of processors required
to store the problem as F = O(nα). Note that the lower
subfigure in Figure 3 is a log-log scale, while the upper sub-
figure’s y-axis is linear. For a good enough network (D ≥ 4),

the perfect strong scaling range is Pmin < P < P
(log2 7)/2
min ≈

P 1.40
min . For a 3D torus, the perfect strong scaling range

shrinks to Pmin < P < P
3(log2 7−2)/2
min ≈ P 1.21

min . On 2D torus,
perfect strong scaling is impossible. These three regions of
network dimension (D ≥ D2, D ≤ D1 and D1 < D < D2)
are illustrated in Figure 2 as being the points of transition
between dominance of the various bounds. The upper por-
tion of Figure 3 demonstrates the regions of dominance for
the various network dimensions in the case of Strassen’s al-
gorithm.

5. FUTURE RESEARCH

Other Networks.
In this work, we exclusively address link contention bounds

for tori and mesh networks. We suspect that results for
hypercubes and certain indirect networks (e.g. fat trees)
should follow easily. For indirect networks, a method for

Figure 3: Communication bounds for Strassen’s al-
gorithm on D-dimensional tori. The lower plot is
log-log, while the upper is linear on the y-axis. Hor-
izontal lines in the lower plot correspond to perfect
strong scaling.

integrating router nodes into the model of computation is
needs to be defined. Indirect topologies are common in dat-
acenters as well as on-chip networks, so such an extension of
the contention bounds for direct networks would be useful.

Applicability.
A network may have expansion sufficiently large to pre-

clude the use of our contention bound on a given computa-
tion, yet the contention may still dominate the communica-
tion cost. This calls for further study on how well compu-
tations and networks match each other. Similar questions
have been addressed by Leiserson and others [13, 24, 29],
and had a large impact on the design of supercomputer net-
works. In particular, a parallel computer that uses a fat
tree communication network can simulate any other routing
network, at the cost of at most polylogarithmic slowdown.

Communication Efficient Algorithms.
Some parallel algorithms are network aware, and attain

the per-processor communication lower bounds, when net-
work graphs allow it (cf. [36] for classical matrix multipli-
cation on 3D torus). Many algorithms are communication
optimal when all-to-all connectivity is assumed, but their
performance on other topologies has not yet been studied.
Are there algorithms that attain the communication lower
bounds for any realistic network graph (either by auto tun-
ing, or by network-topology-oblivious tools)?

Acknowledgments
We thank Guy Kindler for pointing us to [17]. Research
partially funded by DARPA Award Number HR0011-12-2-
0016, the Center for Future Architecture Research, a mem-
ber of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA, and ASPIRE
Lab industrial sponsors and affiliates Intel, Google, Nokia,
NVIDIA, Oracle, MathWorks and Samsung. Research is
also supported by U.S. Department of Energy Office of Sci-
ence, Office of Advanced Scientific Computing Research, Ap-
plied Mathematics program DE-SC0004938, DE-SC0005136,
DE-SC0003959,DE-SC0008700, DE-SC0008699, DE-SC0010200
and DOE AC02-05CH11231. Research is supported by grants
1878/14 and 1045/09 from the Israel Science Foundation
(founded by the Israel Academy of Sciences and Humani-
ties), and grant 2010231 from the US-Israel Bi-National Sci-
ence Foundation. This research is supported by grant 3-
10891 from the Ministry of Science and Technology, Israel.
This research was supported in part by an appointment to
the Sandia National Laboratories Truman Fellowship in Na-
tional Security Science and Engineering, sponsored by San-
dia Corporation (a wholly owned subsidiary of Lockheed
Martin Corporation) as Operator of Sandia National Labo-
ratories under its U.S. Department of Energy Contract No.
DE-AC04-94AL85000. Any opinions, findings, conclusions,
or recommendations in this paper are solely those of the
authors and does not necessarily reflect the position or the
policy of the sponsors.

6. REFERENCES
[1] Overview of the IBM Blue Gene/P project. IBM

Journal of Research and Development,
52(1.2):199–220, Jan 2008.

[2] N. R. Adiga, M. Blumrich, D. Chen, P. Coteus,
A. Gara, M. Giampapa, P. Heidelberger, S. Singh,
B. Steinmacher-Burow, T. Takken, M. Tsao, and
P. Vranas. Blue Gene/L Torus Interconnection
Network. IBM Journal of Research and Development,
49(2.3):265–276, March 2005.

[3] A. Aggarwal, A. K. Chandra, and M. Snir.
Communication complexity of PRAMs. Theor.
Comput. Sci., 71:3–28, March 1990.

[4] A. Aggarwal, A. K. Chandra, and M. Snir.
Communication complexity of PRAMs. Theoretical
Computer Science, 71(1):3–28, 1990.

[5] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems. Commun.
ACM, 31(9):1116–1127, 1988.

[6] Y. Ajima, S. Sumimoto, and T. Shimizu. Tofu: A 6d
mesh/torus interconnect for exascale computers.
Computer, 42(11):36–40, Nov 2009.

[7] G. Ballard. Avoiding Communication in Dense Linear
Algebra. PhD thesis, EECS Department, University of
California, Berkeley, Aug 2013.

[8] G. Ballard, A. Buluç, J. Demmel, L. Grigori,
B. Lipshitz, O. Schwartz, and S. Toledo.
Communication optimal parallel multiplication of
sparse random matrices. In SPAA’13: Proceedings of
the 25rd ACM Symposium on Parallelism in
Algorithms and Architectures, 2013.

[9] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Brief announcement: strong scaling of
matrix multiplication algorithms and
memory-independent communication lower bounds. In
Proceedings of the 24th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
’12, pages 77–79, New York, NY, USA, 2012. ACM.

[10] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Graph expansion analysis for
communication costs of fast rectangular matrix
multiplication. In G. Even and D. Rawitz, editors,
Design and Analysis of Algorithms, volume 7659 of
Lecture Notes in Computer Science, pages 13–36.
Springer Berlin Heidelberg, 2012.

[11] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Minimizing communication in numerical linear
algebra. SIAM Journal on Matrix Analysis and
Applications, 32(3):866–901, 2011.

[12] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast
matrix multiplication. Journal of the ACM,
59(6):32:1–32:23, Dec. 2012.

[13] P. Bay and G. Bilardi. Deterministic on-line routing
on area-universal networks. In Proceedings of the 31st
Annual Symposium on the Foundations of Computer
Science (FOCS), pages 297–306, 1990.

[14] J. Berntsen. Communication efficient matrix
multiplication on hypercubes. Parallel Computing,
12(3):335 – 342, 1989.

[15] G. Bilardi, M. Scquizzato, and F. Silvestri. A lower
bound technique for communication on bsp with

application to the fft. In Euro-Par 2012 Parallel
Processing, pages 676–687. Springer, 2012.

[16] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. SIAM,
Philadelphia, PA, USA, May 1997. Also available from
http://www.netlib.org/scalapack/.

[17] B. Bollobás and I. Leader. Edge-isoperimetric
inequalities in the grid. Combinatorica, 11(4):299–314,
1991.

[18] L. Cannon. A cellular computer to implement the
Kalman filter algorithm. PhD thesis, Montana State
University, Bozeman, MN, 1969.

[19] E. Chan, M. Heimlich, A. Purkayastha, and R. Van
De Geijn. Collective communication: theory, practice,
and experience. Concurrency and Computation:
Practice and Experience, 19(13):1749–1783, 2007.

[20] D. Chen, N. Eisley, P. Heidelberger, R. Senger,
Y. Sugawara, S. Kumar, V. Salapura, D. Satterfield,
B. Steinmacher-Burow, and J. Parker. The IBM Blue
Gene/Q Interconnection Fabric. Micro, IEEE,
32(1):32–43, Jan 2012.

[21] M. Christ, J. Demmel, N. Knight, T. Scanlon, and
K. Yelick. Communication lower bounds and optimal
algorithms for programs that reference arrays - part 1.
Technical Report UCB/EECS-2013-61, EECS
Department, University of California, Berkeley, 2013.

[22] M. Driscoll, E. Georganas, P. Koanantakool,
E. Solomonik, and K. Yelick. A
communication-optimal n-body algorithm for direct
interactions. In proceedings of the IPDPS, 2013.

[23] M. T. Goodrich. Communication-efficient parallel
sorting. SIAM J. Computing, 29(2):416–432, 1999.

[24] R. I. Greenberg and C. E. Leiserson. Randomized
routing on fat-tress. In Proceedings of the 26th Annual
Symposium on the Foundations of Computer Science
(FOCS), pages 241–249, 1985.

[25] J. W. Hong and H. T. Kung. I/O complexity: The
red-blue pebble game. In Proc. 14th STOC, pages
326–333, New York, NY, USA, 1981. ACM.

[26] D. Irony, S. Toledo, and A. Tiskin. Communication
lower bounds for distributed-memory matrix
multiplication. J. Parallel Distrib. Comput.,
64(9):1017–1026, 2004.

[27] J. Jeffers, J. Jeffers, and J. Reinders. Intel Xeon Phi
Coprocessor High Performance Programming. Elsevier
Science & Technology Books, 2013.

[28] N. Knight, E. Carson, and J. Demmel. Exploiting data
sparsity in parallel matrix powers computations. In
Proceedings of PPAM ’13, Lecture Notes in Computer
Science. Springer (to appear), 2013.

[29] C. E. Leiserson. Fat-trees: Universal networks for
hardware-efficient supercomputing. IEEE
Transactions on Computers, C-34(10):892–901, 1985.

[30] L. H. Loomis and H. Whitney. An inequality related
to the isoperimetric inequality. Bulletin of the AMS,
55:961–962, 1949.

[31] W. McColl and A. Tiskin. Memory-efficient matrix
multiplication in the BSP model. Algorithmica,
24(3-4):287–297, 1999.

[32] J. P. Michael, M. Penner, and V. K. Prasanna.
Optimizing graph algorithms for improved cache
performance. In Proc. Int’l Parallel and Distributed
Processing Symp. (IPDPS 2002), Fort Lauderdale, FL,
pages 769–782, 2002.

[33] A. Schönhage. Partial and total matrix multiplication.
SIAM J. Computing, 10(3):434–455, 1981.

[34] M. Scquizzato and F. Silvestri. Communication lower
bounds for distributed-memory computations. arXiv
preprint arXiv:1307.1805, 2014. STACS’14.

[35] E. Solomonik, E. Carson, N. Knight, and J. Demmel.
Tradeoffs between synchronization, communication,
and work in parallel linear algebra computations.
Technical Report (Submitted to SPAA’14), University
of California, Berkeley, Department of Electrical
Engineering and Computer Science, 2013.

[36] E. Solomonik and J. Demmel. Communication-optimal
parallel 2.5d matrix multiplication and lu factorization
algorithms. In E. Jeannot, R. Namyst, and J. Roman,
editors, Euro-Par 2011 Parallel Processing, volume
6853 of Lecture Notes in Computer Science, pages
90–109. Springer Berlin Heidelberg, 2011.

[37] E. Solomonik and J. Demmel. Communication-optimal
parallel 2.5D matrix multiplication and LU
factorization algorithms. In Euro-Par’11: Proceedings
of the 17th International European Conference on
Parallel and Distributed Computing. Springer, 2011.

[38] V. Strassen. Gaussian elimination is not optimal.
Numer. Math., 13:354–356, 1969.

[39] V. Strassen. Relative bilinear complexity and matrix
multiplication. Journal fűr die reine und angewandte
Mathematik (Crelles Journal), 1987(375–376):406–443,
1987.

[40] V. V. Williams. Multiplying matrices faster than
Coppersmith-Winograd. In Proceedings of the 44th
Symposium on Theory of Computing, Proc. 45th
STOC, pages 887–898, New York, NY, USA, 2012.
ACM.

APPENDIX
A. DERIVATION OF FIGURE EXPRESSIONS

• Equivalence point for per-processor bounds

We set the per-processor bounds equal to each other,
and solve for P :

F

PMα−1
= Θ

(
N

P 1/α

)

P = Θ

(
F

NMα−1

)α/(α−1)

• Equivalence point for contention bounds

We set the contention bounds equal to each other, and
solve for P :

F

Pα−1/DMα−1
= Θ

(
N

P 1−1/D

)

P = Θ

(
F

NMα−1

)1/(α−1)

• Equivalence point for the memory-dependent per-
processor and memory-independent contention
bounds

We set the memory-dependent per-processor and memory-
independent contention bounds equal to each other,
and solve for P as a function of D:

F

PMα−1
= Θ

(
N

P 1−1/D

)

P = Θ

(
F

NMα−1

)D
B. DOMINANCE OF MEMORY-INDEPENDENT

CONTENTION BOUND

Claim B.1. Let Alg be an algorithm performing a com-
putation of the form given by equation (2) on P processors,
each with local memory of size M , and assume the input
data is initially evenly distributed across processors. Then,

|Z|1/sHBL

M
≤

m∑
j=1

|φj(Z)|
M

.

As the minimum number of processors required to hold the
problem is the right-hand side of this inequality, we conclude
that the memory-independent contention bound dominates
the memory-dependent contention bound as the two bounds
are equivalent when P = |Z|1/sHBL/M .

Proof. To begin a proof, the HBL bound discussed in
Christ et al. [21], states (with certain assumptions) that

|Z| ≤
m∏
j=1

|φj(Z)|sj .

To detail an argument from Section 2 of [21], we present
several greater upper bounds on |Z| that will allow us to
demonstrate the desired result:

|Z| ≤
m∏
j=1

|φj(Z)|sj ≤
m∏
j=1

(
m

max
j=1
|φj(Z)|

)sj

=

(
m

max
j=1
|φj(Z)|

)∑m
j=1 sj

=

(
m

max
j=1
|φj(Z)|

)sHBL

As maxmj=1 xj ≤
∑m
j=1 xj if all xj ≥ 0,

|Z| ≤
(

m
max
j=1
|φj(Z)|

)sHBL

≤

(
m∑
j=1

|φj(Z)|

)sHBL

which proves the desired inequality if we take sHBLth root
of both sides and divide by M .

